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Abstract 

 
A write channel model is constructed for bit-

patterned-media (BPM) recording. The model takes 
arbitrary binary data as input and generates the 
corresponding written magnetization waveform. The 
model allows investigation of characteristics and 
impact of bit errors due to imperfections in the 
lithography process as well as write miss-
synchronization. Simulation results successfully 
demonstrate missing bit and deletion/insertion error 
characteristics of BPM recording. 
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1. Introduction 
 

Bit-patterned-media (BPM) recording is a highly 
promising next generation magnetic recording 
technology that can achieve the areal density over 
1Tb/in2. The magnetic disk in BPM recording is 
patterned to form an array of discrete island domains of 
magnetic material. One bit of information is typically 
stored in each island. The remaining area of the disk is 
non-magnetic. Due to this reason, the island position 
and size are very important in constructing a write 
channel model. In this paper, we construct a write 
channel model for BPM recording. The model takes 
arbitrary binary data as input and generates the 
corresponding written magnetization waveform. The 
model allows investigation of characteristics and 
impact of bit errors and insertion/deletion, due to 
imperfections in the lithography process as well as 
write miss-synchronization. BPM write channel 
modeling basically amounts to modeling the 
lithography process and then the magnetization process. 
The lithography process model generates an array of 
island domains with their positions and sizes randomly 
distributed with user-specified probability distribution 
functions. Our simulation results successfully 
demonstrate missing bit and deletion/insertion error 
characteristics of BPM recording.  

2. Proposed Method 
 

To model the write magnetization process, a write 
bubble is assumed to keep overwriting the islands 
under its influence as it moves in small discrete steps 
along the track. The head movement across the track is 
also allowed in the model. The two-dimensional path 
of the write bubble is obtained via linear interpolation 
of the discrete positions of the write bubble 
corresponding to the center positions of the write 
window, as determined by the external write clock 
signal. The write-clock-generated bubble positions 
have both deterministic and random noise components, 
which are statistically independent of the random 
position and size parameters of the lithography process. 
An island is assumed to be completely magnetized in 
either direction with no partial overwrite possibilities. 
To determine the direction of the written magnetization 
of an island, the Zeeman energy is computed by 
performing a three-dimensional integration over the 
volume of the island on the product of the user-
specified head field gradient function and the medium 
magnetization function [1]. The Zeeman energy loaded 
onto the island by head-field H is denoted by 

 
௏ܧ ∝ 	∭ ۶ሺܠሻ ∙ ௏೔ೞ೗ೌ೙೏ܠሻdܠሺܕ

         (1) 

 
where ܕ is the island magnetization and ௜ܸ௦௟௔௡ௗ is 
the volume of the island. The vector x represents three 
orthogonal directions: along the track, across the track 
and along the vertical direction. We assume ܕሺܠሻ ൌ
0	  off the island and ܕሺܠሻ ൌ ݉௭ሺܠሻ ൌ േ1  on the 
island (only the vertical-component exists). With these 
assumptions (1) simplifies to  
 

஺ܧ  ∝ 	∬ ,ݔ௘௙௙ሺܪ ஺೔ೞ೗ೌ೙೏ݕ݀ݔሻ݀ݕ
≡  (2)         ܧ

 
where ܣ௜௦௟௔௡ௗ is the cross-section of the island in the 
xy-plane and ܪ௘௙௙  is a scalar representing the 
effective write-field. The Zeeman energy is then 
compared with a switching field distribution (SFD) 
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